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Abstract: Molecular similarity and QSAR analyses have been used to develop compact, robust,
and definitive models for skin penetration by organic compounds. The QSAR models have been
sought to provide an interpretation and characterization of plausible molecular mechanisms of
skin penetration. A training set of 40 structurally diverse compounds were selected to be
representative of a parent set of 152 compounds in terms of both structural diversity and range
in measured skin penetration. The subset of 40 compounds was used in a series of QSAR
analyses in the search for the most significant, compact, and straightforward skin penetration
QSAR models. Molecular dynamics simulations were employed to determine a set of MI
(membrane-interaction) descriptors for each test compound (solute) interacting with a model
DMPC monolayer membrane model. The MI-QSAR models may capture features of cellular
membrane lateral transverse transport involved in the overall skin penetration process by organic
compounds. An additional set of intramolecular solute descriptors, the non-MI-QSAR descriptors,
were computed and added to the trial pool of descriptors for building QSAR models. All QSAR
models were constructed using multidimensional linear regression fitting and a genetic algorithm
optimization function. QSAR models were constructed using only non-MI-QSAR descriptors and
using a combination of both these descriptor sets. It was found that a combination of non-MI-
QSAR and MI-QSAR descriptors yielded the optimum models, not only with respect to the
statistical measures of fit but also regarding model predictivity.
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Introduction
Transdermal drug delivery is an attractive route for

administering systemically active drugs. The selective uptake
of compounds into the outermost layer of skin, the stratum
corneum, for beauty and skin care applications is also a
popular research goal. However, the stratum corneum

provides a protective barrier that prevents the loss of
physiologically significant molecular entities, and guards
against the entry of toxic agents from the external environ-
ment. Data for structure-skin penetration relationships have
been, and are continuing to be, gathered, but a definitive
and quantitative way of predicting percutaneous penetration
as a function of chemical structure remains elusive. Speci-
fication of the corresponding mechanism of action for
penetrating the stratum corneum remains largely unknown.
Elucidation of the mechanism of skin penetration, and its
implementation for making quantitative predictions on test
compounds, would be a major benefit to both drug delivery
and beauty and skin care research.
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Several predictive skin penetration models have been
reported in which different descriptor sets have been used
to build the models.1-4 Moreover, a variety of optimization
and fitting procedures, including ANN (artificial neural
network analysis), MLR (multiple linear regression), and
PCA (principal component analysis) have been used in model
building.5,6 The recent paper by Geinoz and co-workers7

provided a general guide for the developments and reported
models in this area. However, most of these models are based
on small data sets and consider only a few descriptors, such
as logP and molecular weight. In order to provide a general
and accurate prediction model that can be used in virtual
screening, a comprehensive skin penetration prediction tool,
based on larger datasets and more descriptors, is needed. In
addition, not only the physicochemical properties of organic
compounds but also the interactions between organic com-
pounds and lipid layers in skin stratum corneum should be
considered as potential descriptors in constructing a general
and reliable prediction model. Interpretation of such a
comprehensive model would provide insight on key factors
of skin penetration and help formulators to choose appropri-
ate skin delivery systems.

We have developed a methodology calledmembrane
interaction QSAR (MI-QSAR)analysis where structure-based
design methodology is combined with classic intramolecular
QSAR analysis to model chemically and structurally diverse
compounds interacting with cellular membranes.8-10 In MI-
QSAR analysis the assumption is made that the phospholipid
regions of a cellular membrane constitute the “receptor”
required in structure-based design that permits incorporation

of structural and chemical diversity into a training set. A set
of membrane-solute intermolecular propertiesare deter-
mined and added to a set of comprehensive intramolecular
solute QSAR descriptors to enlarge the trial QSAR descriptor
pool and, ostensibly, to provide the information needed to
incorporate chemical and structural diversity into the QSAR
analysis. The MI-QSAR descriptor terms have proven to be
significant in generating models for several ADMET
properties.8-11 A major part of the study reported here was
to determine if MI-QSAR descriptors are essential to building
good QSAR models for skin penetration.

Methods
A. Skin Penetration Coefficients.The dependent variable

used in the QSAR analyses is the logarithm of the skin
penetration coefficient, logkp, also known as skin perme-
ability. In vitro skin penetration coefficients for 152 organic
compounds through human skin were used as the parent data
set in units of centimeters/hour (Table 1). These data are a
compilation from several literature sources.6,12-14 Hence, it
may be assumed that there is some intrinsic variability among
the methods of measurement which gets incorporated into
the resultant dataset (Table 1).

B. Building Solute Molecules and a DMPC Monolayer.
All the solute molecules were built using the Chemlab-II
molecular modeling package.15 A single dimyristoylphos-
phatidylcholine (DMPC) molecule was built using Hyper-
Chem program16 from available crystal structure data.17 The
AM1 Hamiltonian in Mopac 6.0 was used for the estimation
of partial atomic charges on all molecules.18

DMPC was selected as the model phospholipid in this
study. The structure of a DMPC molecule is shown in Figure(1) Kasting, G. B.; Smith, R. L.; Cooper, E. R. Effect of Lipid

Solubility and Molecular Size on Percutaneous Absorption. In
Pharmacology and the Skin. Vol. 1. Skin Pharmacokinetics;
Shroot, B., Schaefer, H., Eds.; Kanger: Basel, 1987; pp 138-
153.

(2) Flynn, G. L. Physicochemical Determinants of Skin Absorption.
In Principles of Route-to-Route Extrapolation for Risk Assessment;
Gerrity, T. R., Henry, C. J., Eds.; Elsevier: New York, 1990;
pp 93-127.

(3) Patel, H.; ten Berge, W. F.; Cronin, M. T. D. Quantitative
Structure-Activity Relationships (QSARs) for the Prediction of
Skin Permeation of Exogenous Chemicals.Chemosphere2002,
48, 603-613.

(4) Fitzpatrick, D.; Corish, J. Modelling Skin Permeability in Risk
Assessment: The Future.Chemosphere2004, 55, 1309-1314.

(5) Degim, T.; Hadgraft, J.; Ilbasmis, S.; Ozkan, Y. Predicition of
Skin Penetration Using Artificial Neural Network (ANN) Model-
ing. J. Pharm. Sci.2003, 92, 656-664.

(6) Barratt, M. D. Quantitative Structure-Activity Relationships for
Skin Permeability.Toxicol. in Vitro1995, 9, 27-37.

(7) Geinoz, S.; Guy, R. H.; Testa, B.; Carrupt, P. A. Quantitative
Structure-Permeation Relationships to Predict Skin Permeation:
A Critical Evaluation.Pharm. Res.2004, 21, 83-92.

(8) Kulkarni, A. S.; Hopfinger, A. J.; Osborne, R.; Bruner, L. H.;
Thompson, E. D. Prediction of Eye Irritation from Organic
Chemicals Using Membrane-Interaction QSAR Analysis.Toxicol.
Sci. 2001, 59, 335-345.

(9) Kulkarni, A. S.; Hopfinger, A. J. Membrane-Interaction QSAR
Analysis: Application to the Estimation of Eye Irritation by
Organic Compounds.Pharm. Res.1999, 16, 1244-1252.

(10) Kulkarni, A. S.; Han, Y.; Hopfinger, A. J. Predicting Caco-2 Cell
Permeation Coefficients of Organic Molecules Using Membrane-
Interaction QSAR Analysis.J. Chem. Inf. Comput. Sci. 2002, 42,
331-342.

(11) Iyer, M.; Mishra, R.; Han, Y.; Hopfinger, A. J. Predicting Blood-
Brain Barrier Partitioning of Organic Molecules Using Membrane-
Interaction QSAR Analysis.Pharm. Res.2002, 19, 1611-1621.

(12) Ursin, C.; Hansen, C. M.; Van Dyk, J. W.; Jensen, P. O.;
Christensen, I. J.; Ebbehoej, J. Permeability of Commercial
Solvents Through Living Human Skin.Am. Ind. Hyg. Assoc. J.
1995, 56, 651-660.

(13) Johnson, M. E.; Blankschtein, D.; Langer, R. Evaluation of Solute
Permeation Through the Stratum Corneum: Lateral Bilayer
Diffusion as the Primary Transport Mechanism.J. Pharm. Sci.
1997, 86, 1162-1172.

(14) Wilschut, A.; ten Berge, W. F.; Robinson, P. J.; McKone, T. E.
Estimating Skin Permeation: The Validation of Five Mathematical
Skin Permeation Models.Chemosphere1995, 30, 1275-1296.

(15) Pearlstein, R. A.CHEMLAB-II Users Guide; CHEMLAB Inc:
Chicago, 1988.

(16) HyperChem.HyperChem Release 4.5 for MS Windows; Hypercube
Inc.: Waterloo, Ontario, 1998.

(17) Hauser, H.; Pascher, I.; Pearson, R. H.; Sundell, S. Preferred
Conformation and Molecular Packing of Phosphatidylethanol-
amine and Phosphatidylcholine.Biochim. Biophys. Acta1981, 650,
21-51.

(18) Mopac. Mopac 6.0 Release Notes; Frank J. Seiler Research
Laboratory: United States Air Force Academy, 1990.
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1. An assembly of 25 DMPC molecules (5× 5 × 1) in
(x, y, z) directions, respectively, was used as the model
membrane monolayer. Additional information regarding
construction of the model monolayer used in this MI-QSAR
analysis can be found in refs 3-5.

C. Compound Selection.The 4D molecular similarity
analysis software package19 was used to estimate the mo-
lecular similarity of the set of 40 compounds chosen as the
training set. The training set of 40 compounds is given in
Table 2, and a histogram plot of the distribution of molecular

Table 1. The Parent Data Set of Skin Penetration Compounds

compound
log kp

(cm/h) compound
log kp

(cm/h) compound
log kp

(cm/h)

1,1,1-trichloroethane -2.34 corticosterone -4.22 isoquinoline -1.78
1,3-dichloropropene -2.00 cortisone -5.00 lidocaine -1.78
17-hydroxyprogesterone -3.22 cyclohexanone -2.74 meperidine -2.43
2,3-butanediol -4.40 dexamethasone -4.19 methanol -3.30
2,4,6-trichlorophenol -1.23 diclofenac -1.74 methyl 4-OH-benzoate -2.04
2,4-dichlorophenol -1.22 diethyl ether -1.80 methyl acrylate -2.68
2-butoxyethanol -2.85 diethylamine -2.75 methyl acrylic acid -2.58
2-chlorophenol -1.48 diethylcarbamazine -3.89 methyl Cellosolve -3.73
2-cresol -1.80 digitoxin -4.89 methylene chloride -2.74
2-ethoxyethanol -3.60 dimethyl acetamide -2.80 monomethylhydrazine -3.75
2-heptanone -2.00 dimethyl formamide -1.98 morphine -5.03
2-hexanone -2.35 dimethyl sulfoxide -1.80 morpholine -3.86
2-naphthol -1.55 ephedrine -2.22 N,N-dimethylaniline -1.70
2-pentanone -2.60 epichlorohydrin -3.43 n-butanol -2.60
2-phenylethanol -1.88 estradiol -2.38 n-decanol -1.10
2-toluidine -1.44 estriol -4.40 n-heptanol -1.50
3,4-xylenol -1.44 estrone -2.44 n-hexanol -1.89
3-cresol -1.82 ethanol -3.10 n-methyl-2-pyrrolidone -1.80
3-nitrophenol -2.25 ethyl acrylate -2.39 n-nonanol -1.22
3-xylene -1.10 ethyl formate -3.01 n-octanol -1.28
4-bromophenol -1.44 ethylbenzene 0.08 n-pentanol -2.22
4-chloro-3,5-xylenol -1.28 ethylene dichloride -2.00 n-propanol -2.85
4-chloro-o-cresol -1.26 ethylene glycol -4.07 naproxen -3.40
4-chlorophenol -1.44 ethylhexyl phthalate -1.52 ndela -5.22
4-cresol -1.75 etorphine -2.44 nicotine -1.71
4-ethylphenol -1.46 fentanyl -2.25 nitroglycerine -1.96
4-methyl-2-pentanol -2.33 fluocinonide -2.77 octanoic acid -1.60
4-nitrophenol -2.25 formaldehyde -2.65 ouabain -6.11
acetic acid -3.21 γ-butyrolactone -4.00 pentanoic acid -2.70
acrylic acid -3.05 heptanoic acid -1.70 phenobarbital -3.34
acrylonitrile -2.87 hexachloroethane -1.40 phenol -2.09
aldosterone -5.52 hexanoic acid -1.85 phenylglycidyl ether -2.84
allyl alcohol -2.95 hydrocortisone 21-(6-hydroxy)hexanoate -3.04 pregnenolone -2.82
amobarbital -2.64 hydrocortisone 21-(N,N-dimethyl)succinamate -4.17 progesterone -2.82
aniline -2.65 hydrocortisone 21-dimethylsuccinamate -4.17 propionic acid -2.94
anisole -1.13 hydrocortisone 21-hemipimelate -2.75 propylene carbonate -4.22
atropine -5.07 hydrocortisone 21-hemisuccinate -3.20 propylene oxide -3.05
barbital -3.95 hydrocortisone 21-hexanoate -1.75 resorcinol -3.62
benzaldehyde -1.21 hydrocortisone 21-methylpimelate -2.27 salicyclic acid -2.20
benzene -0.86 hydrocortisone 21-methylsuccinate -3.68 scopolamine -4.30
benzyl alcohol -2.22 hydrocortisone 21-octanoate -1.21 styrene -0.19
butanoic acid -3.00 hydrocortisone 21-pimelamate -3.05 sucrose -5.28
butanone -2.34 hydrocortisone 21-propionate -2.47 sufentanyl -1.92
butobarbital -3.71 hydrocortisone 21-succinamate -4.59 sulfolane -4.70
butyl acrylate -2.00 hydrocortisone -5.52 testosterone -3.40
caffeine -4.09 hydromorphone -4.82 thymol -1.28
catechol -2.77 hydroxypregnenolone -3.22 toluene 0.00
chlorpheniramine -2.66 indometacin -1.83 triethylamine -2.31
codeine -4.31 isoamyl alcohol -2.00 vinyl acetate -2.73
cortexolone -4.13 isobutanol -2.65 water -3.30
cortexone -3.35 isopropylamine -2.90
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similarity of this training set is given in Figure 2. The
distributions of skin penetration coefficients, logkp, for the
parent and training sets are given in Figure 3, parts a and b,

respectively. It is clear from Figures 2 and 3 that the training
set of 40 compounds is a “miniature” version of the parent
data set.

D. Molecular Dynamics Simulations (MDS).The condi-
tions set for the MDS were established in previous MI-QSAR
analyses8-11 and are only summarized here. An initial MDS
on the model membrane, without a solute molecule present,
was carried out to allow for structural relaxation and
distribution of the kinetic energy over the monolayer. In order
to prevent unfavorable van der Waals interactions between

(19) Chem21.4D-MS [Molecular Similarity] Users Manual; The
Chem21 Group, Inc.: 1780 Wilson Drive, Lake Forest, IL 60045,
2002.

Figure 1. The chemical structure of a DMPC phospholipid
molecule with an arbitrary atom numbering assignment. c1
and c2 denote the two aliphatic chains of a DMPC molecule.

Table 2. The 40 Compounds Forming the Training Set

compound
logkp

(cm/h) compound
logkp

(cm/h)

2-chlorophenol -1.48 hexanol -1.89
2,4,6-trichlorophenol -1.23 hydrocortisone -5.52
2,4-dichlorophenol -1.22 hydromorphone -4.82
4-bromophenol -1.44 methanol -3.30
4-chlorophenol -1.44 methylene chloride -2.74
4-chloro-o-cresol -1.26 morphine -5.03
aldosterone -5.52 ndela -5.22
atropine -5.07 ouabain -6.11
benzaldehyde -1.21 pentanol -2.22
benzene -0.86 phenol -2.09
butanone -2.34 propanol -2.85
butyric acid -3.00 propylene carbonate -4.22
caffeine -4.09 resorcinol -3.62
corticosterone -4.22 salicilic acid -2.20
decanol -1.10 scopolamine -4.30
diethyl ether -1.80 styrene -0.19
estradiol -2.38 sucrose -5.28
estriol -4.40 sulfolane -4.70
ethanol -3.10 testosterone -3.40
ethyl benzene 0.08 thymol -1.28

Figure 2. Distribution of 4D molecular similarity measures
for the training set.

Figure 3. Distribution of log kp values over the (a) parent
data set and (b) training set. The X-axes record compound
numbers which are arbitrary.
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a solute molecule and the membrane DMPC molecules, one
of the “center” DMPC molecules was removed from the
equilibrated monolayer and a test solute molecule inserted
in the space created by the missing DMPC molecule. Each
of the test solute molecules of the permeation data set was
inserted at three different positions (depths) in the DMPC
monolayer with the most polar group of the solute molecule
“facing” toward the headgroup region of the monolayer.
Three corresponding MDS models were generated for each
solute molecule with regard to the trial positions of the solute
molecule in the monolayer. The three trial positions were
(1) solute molecule in the headgroup region; (2) solute
molecule between the headgroup region and the aliphatic
chains; and (3) solute molecule in the tail region of the
aliphatic chains.

The lowest energy geometry of the solute molecule in the
monolayer was sought using each of the three trial solute
positions. The three different initial MDS positions of ethanol
are shown in Figure 4a to illustrate this modeling procedure.
The energetically most favorable geometry of this solute
molecule in the model DMPC monolayer is shown in Figure
4b.

MDS were carried out using the Molsim package with an
extended MM2 force field.20 The simulation temperature of
311 K was selected since it is the normal body temperature.
Temperature was held constant in the MDS by coupling the
system to an external fixed temperature bath.21 The trajectory
step size was 0.001 ps over a total simulation time of 20 ps
for each test compound. Two-dimensional periodic boundary
conditions, corresponding to the “surface plane” of the
monolayer, were employed (a ) 50 Å2, b ) 50 Å2, c ) 80
Å2, andγ ) 90°) for the DMPC molecules of the monolayer
model, but not the test solute molecule. The angleγ is the
angle an extended DMPC molecule makes with the “planar
surface” of the monolayer.

Only a single solute molecule was explicitly considered
in each MDS. Before the MDS of the solute-membrane
complexes, each of the solute molecules was placed at each
of the three different positions in the monolayer, as described
above, with the most polar portion of the solute “facing”
toward the headgroup region.

E. Calculation of Descriptors. Both intramolecular
physicochemical properties and features of the solute mol-
ecules andintermolecular solute-membrane interaction
properties were calculated. “Properties” and “features” will
both be referred to as descriptors from this point forward as
they constitute the trial pool of independent variables used
to build the QSAR models. The intramolecular solute
descriptors used in building QSAR models were calculated
using Cerius2.22 The members of this set of descriptors are
listed and defined in Table 3.

The intermolecular solute-membrane interaction descrip-
torswere extracted directly from the MDS trajectories. These
particular intermolecular descriptors were calculated using
the most stable (lowest total potential energy) solute-
membrane geometry realized from MDS sampling of the
three initial positions (see Figure 4a) for each of the solutes.
The intermolecular membrane-solute descriptors are given
in Table 4.

F. Construction QSAR Models.QSAR models derived
from relatively large data sets (>100 compounds) usually
contain a combination ofmajor and minor descriptors
irrespective of the manner in which the data are fit and the
fitting is optimized. Major descriptors are those that are likely
to reflect the global mechanism of action associated with
the data set. Minor descriptors are present in the QSAR to
better provide an overall fit, and/or incorporate specific
attributes of some compounds. These minor descriptors are
usually not reflective of the global mechanism of action.

(20) Doherty, D. C.Molsim Version 3.0 User’s Guide; Chicago, 1994.
(21) Berendsen, H. J. C.; Postman, J. P. M.; Gunsteren, W. F. V.; Nola,

A. D.; Haak, J. R. Molecular Dynamics with Coupling to an
External Bath.J. Chem. Phys. 1984, 81, 3684-3690.

(22) MSI. Cerius2 Molecular Simulations Users Guide Ver. 3.0;
Molecular Simulation Inc.: San Diego, 1997.

Figure 4. (a) A “side” view of an ethanol molecule inserted
at three different positions in the DMPC model monolayer prior
to the start of each of the three corresponding MDS used in
the MI-QSAR modeling. (b) The lowest energy geometry of a
DMPC-ethanol complex in the MDS.
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Table 3. Definitions of the Intramolecular Solute Descriptors

symbol description of the intramolecular solute descriptors

ChiZ Kier and Hall molecular connectivity index, Z ) 0, 1, 2, ...
JX Balaban index: characterizes the shape of a molecule, which can take account of the covalent radii
CHI-V-3_P Kier and Hall valence-modified connectivity index CHI-3_P means third-order CHI index with three

paths (bonds) connected; V means that electron configuration of the atom (single or multiple
bonds) is considered

Ecoh cohesive packing energy of the solute with itself
FH2O desolvation free energy for water
Jurs-FNSA-1 fractional charged partial surface areas: total charge weighted negative surface area divided by the

total molecular solvent-accessible surface area
Jurs-PNSA-1 partial negative surface area: sum of the solvent-accessible surface areas of all negatively charged

atoms
Jurs-PPSA-1 partial positive surface area: sum of the solvent-accessible surface areas of all positively charged

atoms
Jurs-PPSA-3 atomic charge weighted positive surface area: sum of the product of solvent-accessible surface area

X partial charge for all positively charged atoms
Jurs-RPCS relative positive charge surface area: solvent-accessible surface area of most positive atom divided

by descriptor
Jurs-RPCG relative positive charge: charge of most positive atom divided by the total positive charge
Jurs-RNCG relative negative charge: charge of most negative atom divided by the total negative charge
Jurs-FPSA-1 fractional charged partial surface areas: partial positive surface area divided by the total molecular

solvent-accessible surface area
Jurs-FPSA-3 fractional charged partial surface areas: total charge weighted positive surface area divided by the

total molecular solvent-accessible surface area
Jurs-RNCS relative negative charge surface area: solvent-accessible surface area of most negative atom divided

by relative negative charge
Jurs-DPSA-1 difference in charged partial surface areas: partial positive solvent-accessible surface area minus

partial negative solvent-accessible surface area
Kappa6 Kier’s shape indices; Kappa6 is the sixth-order index, compares the molecule graph with “minimal”

and “maximal” graphs
log P octanol/water partition coefficient calculated by Advanced Chemistry Development (ACD,

www.acdlabs.com); log P is related to the hydrophobic character of the molecule
Area molecular surface area: a 3D spatial descriptor that describes the van der Waals area of a molecule
Shadow-Zlength length of molecule in the Z dimension

Table 4. The Explicit Intermolecular Membrane-Solute Interaction Descriptors Forming the Trial MI-QSAR Descriptor Pool

symbol description of the membrane-solute descriptors

〈F(total)〉 average total free energy of interaction of the solute and membrane
〈E(total)〉 average total interaction energy of the solute and membrane
Einter(total) interaction energy between the solute and the membrane at the total intermolecular system minimum

potential energy
EXY(Z) Z ) 1,4-nonbonded, general van der Waals, electrostatic, hydrogen-bonding, torsion, and

combinations thereof energies at the total intermolecular system minimum potential energy.
X and Y can be the solute, S, and/or membrane, M

∆EXY(Z) change in the Z ) 1,4-nonbonded, general van der Waals, electrostatic, hydrogen-bonding, torsion,
and combinations thereof energies due to the uptake of the solute to the total intermolecular
system minimum potential energy. X and Y can be the solute, S, and/or membrane, M

ETT(Z) Z ) 1,4-nonbonded, general van der Waals, electrostatic, hydrogen-bonding, torsion, and
combinations thereof energies of the total (solute and membrane model) intermolecular
minimum potential energy

∆ETT(Z) change in the Z ) 1,4-nonbonded, general van der Waals, electrostatic, hydrogen-bonding, and
combinations thereof of the total (solute and membrane model) intermolecular minimum
potential energy

∆S change in entropy of the membrane due to the uptake of the solute
S absolute entropy of the solute-membrane system
∆F change in density of the model membrane due to the permeating solute
〈d〉 average depth of the solute molecule from the membrane surface
D diffusion coefficient of the solute in the membrane model
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Separating and assigning major and minor descriptors after
QSAR model construction is difficult and ill-defined. Thus,
it can be considered advantageous in the search for the major
descriptors of a training set to define a representative subset
of the parent data set with respect to both chemical diversity
and distribution of the endpoint measures (dependent vari-
ables). The subset can be used as a representative training
set of the parent data set and lead to a small model (in terms
of number of independent variables) where the independent
variables have a high chance of being major descriptors. The
minor descriptors can be thought of as “noise” in the fitting,
which is reduced by reducing the size of the system. That is
the strategy employed here in reducing the size of the data
set from 152 to 40 in the manner described above.

All QSAR models were built and optimized using multi-
dimensional linear regression fitting and genetic function
approximation, GFA, which is a multidimensional optimiza-
tion method based on the genetic algorithm paradigm.23,24

Both linear and quadratic representations of each of the
descriptor values were included in the trial descriptor pool,

and QSAR models were built as a function of the number
of descriptor terms in a model. Statistical significance in the
optimization of a QSAR model was judged jointly by the
correlation coefficient of fit,r2, and the leave-one-out cross
validation correlation coefficient,q2. The leave-one-outq2

value is determined by systematically leaving out each
compound of the training set, and then predicting its value
based on a model derived from the remainder of the training
set. The average of the correspondingr2 values, based on
the predictions from each of these leave-one-out experiments,
is essentially theq2 value for the training set. In addition,
GFA uses the Friedman’s lack of fit (LOF) measure to resist
overfitting, which is a problem often encountered in con-
structing statistical models.25

A test set of five compounds of diverse structures that
span the training set range in logkp values was used to further
explore the robustness and predictivity of each QSAR model.
The five test compounds are listed in Table 5 along with
the observed logkp values. The residual logkp values for
the test set compounds, using each constructed QSAR model,
are also reported in Table 5. The “observed logkp” of two
of the test set compounds, 2-pentanone and acetic acid, are
actually computed values from previously reported QSAR

(23) Rogers, D.; Hopfinger, A. J. Applications of Genetic Function
Approximation to Quantitative Structure-Activity Relationships
and Quantitative Structure-Property Relationships.J. Chem. Inf.
Comput. Sci.1994, 34, 854-866.

(24) Rogers, D. WOLF 6.2 GFA Program; Molecular Simulation
Inc.: San Diego, 1994.

(25) Friedman, J.MultiVariate AdaptiVe Regression Splines; Stanford
University: Stanford, 1988.

Table 5. The Five Test Set Compounds Used To Evaluate Each Best Model from Each Descriptor Model Classa

residuals of fit

compound 3-term model 4-term model 5-term model 6-term model

Linear Non-MI-QSAR
2-pentanone [-2.60] 7.27 1.20 0.04 -5.86
3-cresol [-1.82] 0.11 2.80 2.42 -13.05
acetic acid [-3.21] -41.21 -18.85 -17.40 -166.70
cortisone [-5.00] -18.33 -7.81 -4.99 -18.18
γ-butyrolactone [-4.00] -16.05 -13.73 -13.04 -24.41

Quadratic Non-MI-QSAR
2-pentanone 0.89 0.30 -8.58 -4.27
3-cresol -1.71 -1.99 -5.39 -3.06
acetic acid 41.59 -31.65 -9.22 7.24
cortisone 0.67 -5.77 1.40 -3.11
γ-butyrolactone 16.01 -10.54 -17.53 -3.80

Linear Composite
2-pentanone 0.01 -0.13 -0.24 -0.14
3-cresol -0.04 -0.19 -0.46 0.15
acetic acid 0.01 -0.62 -0.16 -0.21
cortisone 0.22 0.02 -0.16 -0.41
γ-butyrolactone 0.00 -1.12 -1.22 -0.62

Quadratic Composite
2-pentanone 0.29 -0.11 -0.51 -0.77
3-cresol 0.30 -0.53 -0.07 -0.24
acetic acid -0.59 -1.15 -0.50 -0.64
cortisone 0.62 0.36 -0.22 -0.25
γ-butyrolactone -1.01 -1.45 -1.13 -1.43

a The observed log kp values are given in brackets in the first compound listing, and the corresponding residuals of fit to the observed log kp

values are given for each model in columns 2-5.
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models.26 The inclusion of these two compounds in the test
set has been done to explore the consistency between the
models developed here to previously reported models.

G. Classes and Properties of the QSAR Models.Two
classes of QSAR models were constructed on the basis of
the set of descriptors employed in the trial descriptor
pool:

(1) Non-MI-QSAR modelsderived from a descriptor pool
that contains only the intramolecular solute descriptors listed
in Table 3. These models are constructed in an equivalent
manner to the very large majority of skin penetration QSAR
models reported in the literature.

(2) Combined (MI-QSAR) modelsderived from a descrip-
tor pool that contains both the intramolecular and intermo-
lecular membrane-solute descriptors.

These two classes of QSAR models were sought with
respect to both the number of descriptors (3- to 6-descriptor-
term models) and linear and quadratic representation of the
descriptor terms. Outlier refinement analyses were carried
out for models that have reasonable statistical fits using all
of the compounds of the training set.

Results

A. The QSAR Models.The optimized 3- to 6-term QSAR
models, for the model-building constraints listed in Methods,
are given below. The definitions of the descriptors used in
the models are given in Tables 3 and 4.

(1) Non-MI-QSAR

(a) Linear Models

(b) Quadratic Models

(2) Combined (MI-QSAR) Models
(a) Linear Models

(b) Quadratic Models

(26) Kirchner, L. A.; Moody, R. P.; Doyle, E.; Bose, R.; Jeffery, J.;
Chu, I. The Prediction of Skin Permeability by Using Physico-
chemical Data.ATLA 1997, 25, 359-370.

log kp ) -4.85- 0.10 (Jurs-RNCS- 5.35)2 -

687.92 (Jurs-RNCG- 0.21)2 + 1.34 (Jurs-RPCS- 2.91)2

(5)

(N ) 40; r2 ) 0.96; q2 ) -0.63)

log kp ) -3.20- 0.002 (Jurs-DPSA-1- 277.20)2 -

0.002 (Jurs-PNSA-1- 40.09)2 + 0.001 (Jurs-PPSA-1-
352.39)2 + 998.66 (Jurs-FNSA-1- 0.11)2 (6)

(N ) 40; r2 ) 0.94; q2 ) -0.18)

log kp ) -0.49+ 0.69 (Jurs-RPCS- 3.00)2 +

0.62 (Jurs-RPCS- 2.47)2 - 702.03 (Jurs-RNCG-
0.21)2 - 24.91 Jurs-RPCG+ 0.12 (Jurs-RNCS- 5.10)2

(7)

(N ) 40; r2 ) 0.97; q2 ) -0.59)

log kp ) -3.26+ 0.77 (Jurs-RPCS- 3.47)2 +

0.10 (Jurs-RNCS- 3.20)2 - 747.21 (Jurs-RNCG-
0.23)2 + 0.62 (Jurs-RPCS- 2.32)2 +

0.94 Shadow-Zlength- 38.88 Jurs-RPCG (8)

(N ) 40; r2 ) 0.97; q2 ) -0.59)

log kp ) -2.97+ 0.22 logP - 0.14ESS(tor) -
0.05Einter(vdW) (9)

(N ) 39; r2 ) 0.80; q2 ) 0.77)

log kp ) -2.43- 0.10ESS(tor) + 0.44 logP -
0.04ESS(hb) - 0.04 Ecoh (10)

(N ) 40; r2 ) 0.81; q2 ) 0.76)

log kp ) -1.01- 0.004ESS(chg)- 0.10ESS(tor) +
0.37 logP - 0.01ETT(tor) - 0.03ESS(hb) (11)

(N ) 38; r2 ) 0.84; q2 ) 0.77)

log kp ) -2.57- 0.05ESS(hb) + 0.55 logP -
0.02 Ecoh- 0.003ESS(tot) - 0.34 Chi10-

0.00003ETT(tot) (12)

(N ) 38; r2 ) 0.85; q2 ) 0.79)

log kp ) -7.20+ 0.04 (logP + 3.28)2 +

0.01 (Ecoh- 45.14)2 + 0.002 (ESS(tor) - 34.45)2 (13)

(N ) 40; r2 ) 0.85; q2 ) 0.81)

log kp ) 496.76- 599.33 Jurs-FPSA-1+ 0.52 Area-
1.84 Jurs-PNSA-1 (1)

(N ) 40; r2 ) 0.67; q2 ) -0.56)

log kp ) 31.34- 1908.61 Jurs-FPSA-3+
4.80 Jurs-PPSA-3+ 478.84 Jurs-FNSA-1-

1.57 Jurs-PNSA-1 (2)

(N ) 40; r2 ) 0.88; q2 ) -0.31)

log kp ) 35.27- 1.56 Jurs-PNSA-1- 1.72 CHI-V-3_P-
2037.39 Jurs-FPSA-3+ 5.19 Jurs-PPSA-3+

474.97 Jurs-FNSA-1 (3)

(N ) 40; r2 ) 0.78; q2 ) -0.30)

log kp ) 120.67- 216.58 Jurs-RNCG- 37.50JX -
7.17 CHI-V-3_P+ 4.37 Jurs-RPCS+

109.70 Jurs-FNSA-1+ 4.02 Kappa6 (4)

(N ) 40; r2 ) 0.80; q2 ) -0.26)
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B. Analysis and Comparison of the QSAR Models.
Comparing the QSAR models constructed from the two
classes of descriptors clearly indicates that models composed
of a combination of both non-MI-QSAR and MI-QSAR
descriptors yield, by far, the best models. All of the non-
MI-QSAR models show negative values ofq2 and, conse-
quently, are rather unstable models in terms of predictivity.
Thus, the MI-QSAR descriptors are providing information
about the skin penetration process that is not captured by
the intramolecular (non-MI-QSAR) solute descriptors.

In the outlier refinement analysis, analogues of the training
set were considered outliers when the residuals of fit exceed
2 standard deviations, SD, from the mean of the residual of
fit of the whole training set. Using this criterion outlier
compounds were found in the composite linear models. The
outliers are scopolamine and benzaldehyde (for the 6-term
model), estriol and benzaldehyde (for the 5-term model), and
costicosterone (for the 3-term model). The quadratic com-
posite models do not have any outliers, suggesting that
slightly nonlinear dependencies exist between the descriptors
and logkp. Outlier refinement analyses were not carried out
for non-MI-QSAR models since each of these models have
negative values ofq2 and, therefore, lack predictive stability.

The observed and residual logkp values for a test set of
five compounds are given as part of Table 5. An inspection
of the residual values of prediction for the test set suggests
that the models from the combined descriptor sets are, indeed,
most predictive as suggested by theq2 values of the models.
The two test set compounds, 2-pentanone and acetic acid,
whose “observed” logkp values were actually computed,26

are predicted with fidelity about equal to that of the other
three compounds. This suggests that there may be a general
consistency among the skin penetration QSAR models, with
the differences among the QSAR models mainly arising from
the extent of structural diversity that can be handled by a
model and, perhaps, the differences in predictive resolution
among the QSAR models.

Potts and Guy27 described a skin permeability prediction
model based on molecular weight (MW) and the octanol-
water partition coefficient (logP) using a skin permeability
data set collected by Flynn.2 This optimum skin permeation
QSAR model is

This QSAR model indicates that percutaneous absorption is
mediated by the hydrophobicity and the molecular weight
of the penetrant. The Potts and Guy model is regarded as
one of the better QSAR models for skin penetration predic-
tion. However, the linear non-MI-QSAR descriptor models,
eqs 1-4, constructed in this study are far different in
descriptor terms from the Potts and Guy model, eq 17. Thus,
in order to explore if the training set used in this work would
provide a better QSAR model using the same descriptors of
the Potts and Guy model, a “new” Potts and Guy model was
constructed and optimized using the GFA. The resulting
model is

The use of only logP and MW as descriptors leads to a
QSAR model having lower values of bothr2 andq2 for the
training set of this study as compared to ther2 andq2 of the
Potts and Guy QSAR model, eq 17. In order to test the
predictive power of eq 18, it was applied to the same test
set of five compounds used to evaluate the other QSAR
models developed in this study. The predicted skin penetra-
tion values for the test set compounds using eq 18 are given
in Table 6. The results of applying the Potts and Guy QSAR
model, eq 17, directly to the test set of five compounds is
also given in Table 6. It is clear from the residuals of fit for
the test set predictions that the linear composite QSAR
models (Table 5) perform better than both of the Potts and
Guy models. Of course, more descriptor terms are present
in the composite QSAR models, but these additional descrip-
tor terms are seemingly needed to be able to make good
predictions.

In this context of descriptor terms, a comparison was done
between the Potts and Guy model (eq 17) and the three-
term linear composite QSAR model (eq 9),

Both of these QSAR models have similar regression
constants (-2.80 and-2.97) and similar dependencies on
log P (regression coefficients of 0.72 and 0.22). The
molecular weight term of the Potts and Guy model is replaced

(27) Potts, R. O.; Guy, R. H. Predicting Skin Permeability.Pharm.
Res. 1992, 9, 663-669.

log kp ) -8.21+ 0.05 (logP + 3.28)2 + 0.003 (ESS(tor) -

34.45)2 + 0.001 (Ecoh- 45.14)2 + 0.02ETT(bend) (14)

(N ) 40; r2 ) 0.88; q2 ) 0.82)

log kp ) -8.38+ 0.002 (ESS(tor) - 34.45)2 +

0.44 logP + 0.0005(FH2O+ 83.58)2 +
0.00006 (ETT(hb) + 11.39)2 + 2.64 Chi122 (15)

(N ) 40; r2 ) 0.95; q2 ) 0.81)

log kp ) -8.41+ 0.003 (ESS(tor) - 21.85)2 +

0.45 logP + 0.0005 (FH2O+ 83.58)2 +
0.00006 (ETT(hb) + 11.39)2 + 4.05 Chi122 +

0.06 (Chi8- 4.93)2 (16)

(N ) 40; r2 ) 0.91; q2 ) 0.81)

log kp ) 0.72 logP - 0.0059 MW- 2.80 (17)

(N ) 93; r2 ) 0.67; q2 ) 0.65)

log kp ) 0.28 logP - 0.007 MW- 2.00 (18)

(N ) 40; r2 ) 0.56; q2 ) 0.51)

log kp ) 0.22 logP - 0.14ESS(tor) - 0.05Einter(vdW) -
2.97

(N ) 39; r2 ) 0.80; q2 ) 0.77)
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by two descriptor terms in the composite descriptor QSAR
model. The second descriptor term of eq 9,-0.14ESS(tor),
indicates that skin penetration decreases as the torsion energy
of a penetrant solute increases. Such an increase in torsion
energy can arise as the penetrant solute becomes larger, that
is, as molecular weight increases, and/or as the penetrant
becomes more rigid in conformation. The other descriptor
term in the composite descriptor QSAR model is-0.05Einter-
(vdW), which indicates that skin penetration of the penetrant
decreases as the van der Waals penetrant-membrane inter-
action energy favorably increases. This term is dependent
on molecular weight but can both increase and decrease with
molecular weight. This term is, most likely, a compensating
term to the logP term. Better van der Waals interactions,
which dominate the origin of hydrophobicity, are possible
when the solute is in the membrane than when in an aqueous
medium. TheEinter(vdW) descriptor captures this thermo-
dynamic feature.

Thus, the three-term combined descriptor QSAR can be
thought to “dissect” the molecular weight term of the Potts
and Guy model and replace it with two terms that incorporate
more molecular detail. The higherr2 value in the linear
composite descriptor QSAR model, as compared to both eqs
17 and 18, indicates a better data fitting for the regression
model. The higherq2 value of the combined descriptor QSAR
model indicates that it is more predictive and captures more
structural information than does the Potts and Guy model.

Discussion

Three major conclusions can be made from the findings
of this study which relate to both understanding the skin
penetration process, and how best to model and correspond-
ingly extract information from data generated in skin
penetration studies. The first major conclusion is that the
composite descriptor QSAR models in this study are far
better than those constructed using only non-MI-QSAR trial
descriptor sets. The composite descriptor QSAR models are
very “robust” statistically. Moreover, on the basis of the high
values of theq2 and of the test set prediction, these models
should have considerable predictive power skin penetration
studies, which seems borne out for the test set predictions.
Overall, the MI-QSAR descriptors do, in fact, win out over
the other descriptors in building optimum QSAR models.

A corollary to this conclusion is that solute-membrane
interactions, as represented by the MI-QSAR descriptors,
provide information regarding the skin penetration process
that cannot be realized from properties (descriptors) derived
solely from the solute. Thus, QSAR models for skin
penetration employing only solute-derived descriptors fail
to capture significant features of the skin penetration process,
and they can be expected to be limited both in predictive
power and in the insight they provide regarding this
biochemical process.

The second major conclusion is that partitioning between
aqueous (polar) and lipid (nonpolar) media, which is best
represented by logP, is the most significant factor in the
skin penetration mechanism. logP appears in all composite
QSAR models of this study and nearly every non-MI-QSAR
model reported in the literature. Interestingly, however, log
P is not found in any of the non-MI-QSAR models, eqs 1-4,
in this study. Certainly theq2 of eqs 1-4 are poor, but the
criterion for building these models wasr2 which are
significant for these models. It would seem that the partition-
ing process between aqueous and lipid media can be
represented by descriptors other than logP and/or such
descriptors can augment logP in describing such partitioning.
The presence and importance of logP are seemingly
dependent upon the number, structure, and size of compounds
in a training set, and on the set of descriptors available for
building a model. For medium size data sets and/or for
descriptors like those used in this study, logP can be absent
because specific hydrogen bonding, hydrophobic and aqueous
solvation, and related descriptors are better representations
of compound partitioning into a membrane than logP.
However, as a training set becomes very large and/or very
structurally diverse, logP becomes the best single descriptor
to capture the average behavior of membrane partitioning.
But capturing the average behavior means that the precision
of prediction of the corresponding model will drop off.

Last, there are four major factors which seemingly govern
skin penetration of a compound and reveal features of the
mechanism of action:

(1) Polar/nonpolar partitioning of the compound as
generally represented by logP. This descriptor is present in
all of the composite QSAR models and indicates that skin
penetration increases with increasing logP.

(2) Polar, electrostatic, hydrogen-bonding, and/or aqueous
solVation interactionsinvolving the compound as represented
by FH2O,ESS(hb) and,ESS(chg). The presence of FH2O only
as quadratic terms in the models suggests that there is an
optimum aqueous solvation free energy (aqueous solubility)
for a compound that, in turn, optimizes skin penetration. It
is this factor, relative aqueous solubility, which is being
captured by this set of descriptors.

(3) Size and shapeof the compound as represented by
ESS(vdW), Chi8, Chi10, and Chi12. Presumably this factor
accounts for the steric component to diffusing through the
skin media. In this particular study, the use of size- and
shape-related descriptors, which substitute for a molecular
size only descriptor found in many non-MI-QSAR models,

Table 6. Residuals of Fit for the Test Set Predictions
Using the Optimized Potts and Guy 2-Term (log P and
MW) QSAR Model for the Training Set of This Study, Eq
18, and the Original Potts and Guy QSAR Model, Eq 17

test compound
log kp prediction,

eq 18
log kp prediction,

eq 17

2-pentanone -0.22 0.13
3-cresol 0.27 -0.10
acetic acid -0.67 0.24
cortisone -1.21 -1.96
γ-butyrolactone -1.23 -0.27
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obviates the need to divide the training set into structural/
chemical classes of compounds for which individual QSAR
models are built for each class in other studies of skin
penetration.2,6

(4) Conformational flexibilityof the compound as repre-
sented byESS(tor) andETT(tor). This pseudo entropic factor
can also be related to thesizeand rigidity of a penetrant
solute.

Ongoing work is focusing upon extending and refining
the present QSAR models by using clustering and discrimi-
nate analyses on the parent data set of compounds. This
approach is designed to build a manifold set of skin

penetration QSAR models which, in composite, will provide
accurate estimates of skin penetration for a wide range of
chemistries as well as to obtain more information about the
overall skin penetration mechanism.
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