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Abstract: Molecular similarity and QSAR analyses have been used to develop compact, robust,
and definitive models for skin penetration by organic compounds. The QSAR models have been
sought to provide an interpretation and characterization of plausible molecular mechanisms of
skin penetration. A training set of 40 structurally diverse compounds were selected to be
representative of a parent set of 152 compounds in terms of both structural diversity and range
in measured skin penetration. The subset of 40 compounds was used in a series of QSAR
analyses in the search for the most significant, compact, and straightforward skin penetration
QSAR models. Molecular dynamics simulations were employed to determine a set of Ml
(membrane-interaction) descriptors for each test compound (solute) interacting with a model
DMPC monolayer membrane model. The MI-QSAR models may capture features of cellular
membrane lateral transverse transport involved in the overall skin penetration process by organic
compounds. An additional set of intramolecular solute descriptors, the non-MI-QSAR descriptors,
were computed and added to the trial pool of descriptors for building QSAR models. All QSAR
models were constructed using multidimensional linear regression fitting and a genetic algorithm
optimization function. QSAR models were constructed using only non-MI-QSAR descriptors and
using a combination of both these descriptor sets. It was found that a combination of non-MlI-
QSAR and MI-QSAR descriptors yielded the optimum models, not only with respect to the
statistical measures of fit but also regarding model predictivity.
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Introduction provides a protective barrier that prevents the loss of

Transdermal drug delivery is an attractive route for Physiologically significant molecular entities, and guards
administering systemically active drugs. The selective uptake 29ainst the entry of toxic agents from the external environ-
of compounds into the outermost layer of skin, the stratum ment. Data for structureskin penetration relationships have
corneum, for beauty and skin care applications is also abeen, and are continuing to be, gathered, but a definitive
popular research goal. However, the stratum corneumand quantitative way of predicting percutaneous penetration

as a function of chemical structure remains elusive. Speci-
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Products. Inc.. 1 Avon Place. Suffern. NY 10901-5605. Tel: Elucidation of the mechanism of skin penetration, and its
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466 MOLECULAR PHARMACEUTICS VOL. 1, NO. 6, 466—476 10.1021/mp049924+ CCC: $27.50 © 2004 American Chemical Society

Published on Web 09/30/2004



Skin Penetration Processes of Organic Molecules articles

Several predictive skin penetration models have been of structural and chemical diversity into a training set. A set
reported in which different descriptor sets have been usedof membrane-solute intermolecular propertieare deter-
to build the modeld-* Moreover, a variety of optimization  mined and added to a set of comprehensive intramolecular
and fitting procedures, including ANN (artificial neural solute QSAR descriptors to enlarge the trial QSAR descriptor
network analysis), MLR (multiple linear regression), and pool and, ostensibly, to provide the information needed to
PCA (principal component analysis) have been used in modelincorporate chemical and structural diversity into the QSAR
building5® The recent paper by Geinoz and co-workers analysis. The MI-QSAR descriptor terms have proven to be
provided a general guide for the developments and reportedsignificant in generating models for several ADMET
models in this area. However, most of these models are basegropertie$ ' A major part of the study reported here was
on small data sets and consider only a few descriptors, suchto determine if MI-QSAR descriptors are essential to building
as logP and molecular weight. In order to provide a general good QSAR models for skin penetration.
and accurate prediction model that can be used in virtual
screening, a comprehensive skin penetration prediction tool, Methods
based on larger datasets and more descriptors, is needed. In A. Skin Penetration Coefficients.The dependent variable
addition, not only the physicochemical properties of organic used in the QSAR analyses is the logarithm of the skin
compounds but also the interactions between organic com-Penetration coefficient, log,, also known as skin perme-
pounds and ||p|d |aye|’s in skin stratum corneum should be ablllty In vitro skin penetration coefficients for 152 OrganiC
considered as potential descriptors in constructing a generacompounds through human skin were used as the parent data
and reliable prediction model. Interpretation of such a Setin units of centimeters/hour (Table 1). These data are a
comprehensive model would provide insight on key factors compilation from several literature sources:** Hence, it
of skin penetration and he|p formulators to choose appropri_ may be assumed that there is some intrinsic variability among
ate skin delivery systems. the methods of measurement which gets incorporated into

We have developed a methodology calle®embrane  the resultant dataset (Table 1).
interaction QSAR (MI-QSARInalysis where structure-based ~ B. Building Solute Molecules and a DMPC Monolayer.
design methodology is combined with classic intramolecular All the solute molecules were built using the Chemlab-I
QSAR analysis to model chemically and structurally diverse Molecular modeling package.A single dimyristoylphos-
compounds interacting with cellular membrafe$.in Mi- phatidylcholine (DMPC) molecule was built using Hyper-
QSAR analysis the assumption is made that the phospholipidChem prograrif from available crystal structure dataThe
regions of a cellular membrane constitute the “receptor" AM1 Hamiltonian in MOpaC 6.0 was used for the estimation
required in structure-based design that permits incorporationOf partial atomic charges on all molecufés.
DMPC was selected as the model phospholipid in this
(1) Kasting, G. B.; Smith, R. L.; Cooper, E. R. Effect of Lipid Study. The structure of a DMPC molecule is shown in Figure

Solubility and Molecular Size on Percutaneous Absorption. In
Pharmacology and the Skin. Vol. 1. Skin Pharmacokingtics (10) Kulkarni, A. S.; Han, Y.; Hopfinger, A. J. Predicting Caco-2 Cell

Shroot, B., Schaefer, H., Eds.; Kanger: Basel, 1987; pp-138 Permeation Coefficients of Organic Molecules Using Membrane-
153. Interaction QSAR Analysisl. Chem. Inf. Comput. S@002 42,

(2) Flynn, G. L. Physicochemical Determinants of Skin Absorption. 331-342.

In Principles of Route-to-Route Extrapolation for Risk Assessment (11) lyer, M.; Mishra, R.; Han, Y.; Hopfinger, A. J. Predicting Blood-
Gerrity, T. R., Henry, C. J., Eds.; Elsevier: New York, 1990; Brain Barrier Partitioning of Organic Molecules Using Membrane-
pp 93-127. Interaction QSAR AnalysisPharm. Res2002 19, 1611-1621.

(3) Patel, H.; ten Berge, W. F.; Cronin, M. T. D. Quantitative (12) Ursin, C.; Hansen, C. M.; Van Dyk, J. W.; Jensen, P. O
Structure-Activity Relationships (QSARSs) for the Prediction of Christensen, |. J.; Ebbehoej, J. Permeability of Commercial
Skin Permeation of Exogenous Chemicaiiemospher2002 Solvents Through Living Human Skim. Ind. Hyg. Assoc. J.
48, 603-613. 1995 56, 651-660.

(4) Fitzpatrick, D.; Corish, J. Modelling Skin Permeability in Risk  (13) Johnson, M. E.; Blankschtein, D.; Langer, R. Evaluation of Solute
Assessment: The Futur€hemospher004 55, 1309-1314. Permeation Through the Stratum Corneum: Lateral Bilayer

(5) Degim, T.; Hadgraft, J.; llbasmis, S.; Ozkan, Y. Predicition of Diffusion as the Primary Transport Mechanisdn.Pharm. Sci.
Skin Penetration Using Artificial Neural Network (ANN) Model- 1997 86, 1162-1172.
ing. J. Pharm. Sci2003 92, 656-664. (14) Wilschut, A.; ten Berge, W. F.; Robinson, P. J.; McKone, T. E.

(6) Barratt, M. D. Quantitative Structure-Activity Relationships for Estimating Skin Permeation: The Validation of Five Mathematical
Skin PermeabilityToxicol. in Vitro 1995 9, 27—-37. Skin Permeation Model€Chemospherd 995 30, 1275-1296.

(7) Geinoz, S.; Guy, R. H.; Testa, B.; Carrupt, P. A. Quantitative (15) Pearlstein, R. ACHEMLABII Users Guide CHEMLAB Inc:
Structure-Permeation Relationships to Predict Skin Permeation: Chicago, 1988.

A Critical Evaluation.Pharm. Res2004 21, 83—92. (16) HyperChemHyperChem Release 4.5 for MS Windpkgpercube

(8) Kulkarni, A. S.; Hopfinger, A. J.; Osborne, R.; Bruner, L. H.; Inc.: Waterloo, Ontario, 1998.

Thompson, E. D. Prediction of Eye Irritation from Organic (17) Hauser, H.; Pascher, I.; Pearson, R. H.; Sundell, S. Preferred
Chemicals Using Membrane-Interaction QSAR Analy§isxicol. Conformation and Molecular Packing of Phosphatidylethanol-
Sci 2001, 59, 335-345. amine and Phosphatidylcholir@iochim. Biophys. Actda981, 650,

(9) Kulkarni, A. S.; Hopfinger, A. J. Membrane-Interaction QSAR 21-51.

Analysis: Application to the Estimation of Eye Irritation by  (18) Mopac. Mopac 6.0 Release Notegrank J. Seiler Research
Organic Compound$?harm. Res1999 16, 1244-1252. Laboratory: United States Air Force Academy, 1990.
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Table 1. The Parent Data Set of Skin Penetration Compounds

log kp log kp log kp
compound (cm/h) compound (cm/h) compound (cm/h)
1,1,1-trichloroethane —2.34 corticosterone —4.22 isoquinoline —-1.78
1,3-dichloropropene —2.00 cortisone —5.00 lidocaine —-1.78
17-hydroxyprogesterone  —3.22 cyclohexanone —2.74 meperidine —2.43
2,3-butanediol —4.40 dexamethasone —4.19 methanol —3.30
2,4,6-trichlorophenol —-1.23 diclofenac —-1.74 methyl 4-OH-benzoate  —2.04
2,4-dichlorophenol —-1.22 diethyl ether —1.80 methyl acrylate —2.68
2-butoxyethanol —2.85 diethylamine —2.75 methyl acrylic acid —2.58
2-chlorophenol —1.48 diethylcarbamazine —3.89 methyl Cellosolve —3.73
2-cresol -1.80 digitoxin —4.89 methylene chloride —2.74
2-ethoxyethanol —3.60 dimethyl acetamide —2.80 monomethylhydrazine —3.75
2-heptanone —2.00 dimethyl formamide —-1.98 morphine —5.03
2-hexanone —2.35 dimethyl sulfoxide —1.80 morpholine —3.86
2-naphthol —1.55 ephedrine —2.22 N,N-dimethylaniline —-1.70
2-pentanone —2.60 epichlorohydrin —3.43 n-butanol —2.60
2-phenylethanol —1.88 estradiol —2.38 n-decanol —-1.10
2-toluidine —1.44 estriol —4.40 n-heptanol —1.50
3,4-xylenol —1.44 estrone —2.44 n-hexanol —1.89
3-cresol —-1.82 ethanol —3.10 n-methyl-2-pyrrolidone  —1.80
3-nitrophenol —2.25 ethyl acrylate —2.39 n-nonanol —1.22
3-xylene -1.10 ethyl formate -3.01 n-octanol —-1.28
4-bromophenol —1.44 ethylbenzene 0.08 n-pentanol —2.22
4-chloro-3,5-xylenol —-1.28 ethylene dichloride —2.00 n-propanol —2.85
4-chloro-o-cresol -1.26 ethylene glycol —4.07 naproxen —3.40
4-chlorophenol —1.44 ethylhexyl phthalate —-1.52 ndela —5.22
4-cresol —-1.75 etorphine —2.44 nicotine —-1.71
4-ethylphenol —1.46 fentanyl —-2.25 nitroglycerine —-1.96
4-methyl-2-pentanol —2.33 fluocinonide —2.77 octanoic acid —1.60
4-nitrophenol —-2.25 formaldehyde —2.65 ouabain —-6.11
acetic acid —-3.21 y-butyrolactone —4.00 pentanoic acid —2.70
acrylic acid —3.05 heptanoic acid —-1.70 phenobarbital —3.34
acrylonitrile —2.87 hexachloroethane —1.40 phenol —2.09
aldosterone —5.52 hexanoic acid —1.85 phenylglycidyl ether —2.84
allyl alcohol —2.95 hydrocortisone 21-(6-hydroxy)hexanoate —3.04 pregnenolone —2.82
amobarbital —2.64 hydrocortisone 21-(N,N-dimethyl)succinamate  —4.17 progesterone —2.82
aniline —2.65 hydrocortisone 21-dimethylsuccinamate —4.17 propionic acid —2.94
anisole —-1.13 hydrocortisone 21-hemipimelate —2.75 propylene carbonate —4.22
atropine -5.07 hydrocortisone 21-hemisuccinate -3.20 propylene oxide —3.05
barbital —3.95 hydrocortisone 21-hexanoate -1.75 resorcinol —3.62
benzaldehyde -1.21 hydrocortisone 21-methylpimelate —-2.27 salicyclic acid —-2.20
benzene —0.86 hydrocortisone 21-methylsuccinate —3.68 scopolamine —4.30
benzyl alcohol —2.22 hydrocortisone 21-octanoate -1.21 styrene -0.19
butanoic acid —3.00 hydrocortisone 21-pimelamate —3.05 sucrose —5.28
butanone —2.34 hydrocortisone 21-propionate —2.47 sufentanyl —-1.92
butobarbital —-3.71 hydrocortisone 21-succinamate —4.59 sulfolane —4.70
butyl acrylate —2.00 hydrocortisone —5.52 testosterone —3.40
caffeine —4.09 hydromorphone —4.82 thymol —-1.28
catechol —2.77 hydroxypregnenolone —3.22 toluene 0.00
chlorpheniramine —2.66 indometacin -1.83 triethylamine —-2.31
codeine —4.31 isoamyl alcohol —2.00 vinyl acetate —2.73
cortexolone —4.13 isobutanol —2.65 water —3.30
cortexone —-3.35 isopropylamine —2.90

1. An assembly of 25 DMPC molecules (6 5 x 1) in C. Compound Selection.The 4D molecular similarity

(X, y, 2) directions, respectively, was used as the model analysis software packatjevas used to estimate the mo-
membrane monolayer. Additional information regarding lecular similarity of the set of 40 compounds chosen as the
construction of the model monolayer used in this MI-QSAR training set. The training set of 40 compounds is given in
analysis can be found in refs-5. Table 2, and a histogram plot of the distribution of molecular

468 MOLECULAR PHARMACEUTICS VOL. 1, NO. 6



Skin Penetration Processes of Organic Molecules

articles

H OB g
13ll7ou by ™
14,15 el
P o, 22
17,1819
HE n
789 HE._ o, 112 0 CB
5 TN M aijfillaa TH! il
74
2 o, 345 a8 |1
w1 O :?g"%c i He 5
8073 2
0 S g7
12 ;
1mae HC. g |67
110,111 HG 108 T
B CH, 6566

106 82,
107108 HC. & He 8
104105 HC 103 58 CH, 5556

-l e
% 53 HO.
FB/HL . 48 CH, 4850
9495 HC € o
W gar gy 43
SLEHE. 42
8889 HC T HC
M3 oy A8
®
[T
HC. % on, 404,
117
75 O, 1877
cl
7980 HC ™
“CH, 8283
c? 2 118

Figure 1. The chemical structure of a DMPC phospholipid
molecule with an arbitrary atom numbering assignment. cl1
and c2 denote the two aliphatic chains of a DMPC molecule.

Table 2. The 40 Compounds Forming the Training Set

logkp logkp

compound (cm/h) compound (cm/h)
2-chlorophenol —1.48 hexanol —1.89
2,4,6-trichlorophenol  —1.23 hydrocortisone —5.52
2,4-dichlorophenol —-1.22 hydromorphone —4.82
4-bromophenol —1.44 methanol -3.30
4-chlorophenol —1.44 methylene chloride —2.74
4-chloro-o-cresol -1.26 morphine —5.03
aldosterone —5.52 ndela —5.22
atropine —5.07 ouabain —6.11
benzaldehyde —-1.21 pentanol —2.22
benzene —0.86 phenol —2.09
butanone —2.34 propanol —2.85
butyric acid —3.00 propylene carbonate —4.22
caffeine —4.09 resorcinol —3.62
corticosterone —4.22 salicilic acid —2.20
decanol -1.10 scopolamine —4.30
diethyl ether —1.80 styrene —-0.19
estradiol —2.38 sucrose —5.28
estriol —4.40 sulfolane —4.70
ethanol —-3.10 testosterone —3.40
ethyl benzene 0.08 thymol —1.28

similarity of this training set is given in Figure 2. The
distributions of skin penetration coefficients, I&g for the
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Figure 2. Distribution of 4D molecular similarity measures
for the training set.
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Figure 3. Distribution of log k, values over the (a) parent
data set and (b) training set. The X-axes record compound
numbers which are arbitrary.

respectively. It is clear from Figures 2 and 3 that the training
set of 40 compounds is a “miniature” version of the parent
data set.

D. Molecular Dynamics Simulations (MDS).The condi-
tions set for the MDS were established in previous MI-QSAR

parent and training sets are given in Figure 3, parts a and b,analyse%*' and are only summarized here. An initial MDS

(19) Chem?21.4D-MS [Molecular Similarity] Users Manual The

on the model membrane, without a solute molecule present,
was carried out to allow for structural relaxation and

Chem21 Group, Inc.: 1780 Wilson Drive, Lake Forest, IL 60045, distribution of the kinetic energy over the mOﬂOlayel'. In order

2002.

to prevent unfavorable van der Waals interactions between
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a solute molecule and the membrane DMPC molecules, on
of the “center” DMPC molecules was removed from the
equilibrated monolayer and a test solute molecule inserted

of the test solute molecules of the permeation data set wag
inserted at three different positions (depths) in the DMPC
monolayer with the most polar group of the solute molecule
“facing” toward the headgroup region of the monolayer.
Three corresponding MDS models were generated for eac
solute molecule with regard to the trial positions of the solute
molecule in the monolayer. The three trial positions were
(1) solute molecule in the headgroup region; (2) solute
molecule between the headgroup region and the aliphatic
chains; and (3) solute molecule in the tail region of the
aliphatic chains.

The lowest energy geometry of the solute molecule in the
monolayer was sought using each of the three trial solute
positions. The three different initial MDS positions of ethanol
are shown in Figure 4a to illustrate this modeling procedure.
The energetically most favorable geometry of this solute
molecule in the model DMPC monolayer is shown in Figure
4b.

MDS were carried out using the Molsim package with an
extended MM2 force field® The simulation temperature of
311 K was selected since it is the normal body temperature.
Temperature was held constant in the MDS by coupling the
system to an external fixed temperature Faffhe trajectory
step size was 0.001 ps over a total simulation time of 20 ps
for each test compound. Two-dimensional periodic boundary
conditions, corresponding to the “surface plane” of the
monolayer, were employed & 50 A2 b =50 A2, ¢ = 80
A2 andy = 90°) for the DMPC molecules of the monolayer
model, but not the test solute molecule. The angis the
angle an extended DMPC molecule makes with the “planar jg; e 4. (a) A “side” view of an ethanol molecule inserted

surface” of the monolayer. o _ at three different positions in the DMPC model monolayer prior
_ Only a single solute molecule was explicitly considered g the start of each of the three corresponding MDS used in
in each MDS. Before the MDS of the soluttnembrane  the MI-QSAR modeling. (b) The lowest energy geometry of a

complexes, each of the solute molecules was placed at eaclbmMPC—ethanol complex in the MDS.
of the three different positions in the monolayer, as described

above, with the most polar portion of the solute “facing”  Theintermolecular solute membrane interaction descrip-
toward the headgroup region. . torswere extracted directly from the MDS trajectories. These
E. Calculation of Descriptors. Both intramolecular particular intermolecular descriptors were calculated using
physicochemical properties and features of the solute mol-ihe most stable (lowest total potential energy) setute
ecules andintermolecular solute-membrane interaction  embrane geometry realized from MDS sampling of the
properties were calculated. “Properties” and “features” will {hree initial positions (see Figure 4a) for each of the solutes.
both be referred to as descriptors from this point forward as The intermolecular membrassolute descriptors are given
they constitute the trial pool of independent variables used i, Taple 4.
to build the QSAR models. The intramolecular solute g construction QSAR Models. QSAR models derived
descriptors used in building QSAR models were calculated f,om relatively large data sets-(L00 compounds) usually
using Ceriu&# The members of this set of descriptors are ¢ontain a combination ofnajor and minor descriptors
listed and defined in Table 3. irrespective of the manner in which the data are fit and the
fitting is optimized. Major descriptors are those that are likely
to reflect the global mechanism of action associated with
"the data set. Minor descriptors are present in the QSAR to

(20) Doherty, D. CMolsim Version 3.0 User’s Guig€hicago, 1994.
(21) Berendsen, H. J. C.; Postman, J. P. M.; Gunsteren, W. F. V.; Nola,
A. D.; Haak, J. R. Molecular Dynamics with Coupling to an

External Bath.J. Chem. Phys1984 81, 3684-3690. better provide an overall fit, and/or incorporate specific
(22) MSI. Ceriug Molecular Simulations Users Guide Ver. 3.0  attributes of some compounds. These minor descriptors are
Molecular Simulation Inc.: San Diego, 1997. usually not reflective of the global mechanism of action.
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Table 3. Definitions of the Intramolecular Solute Descriptors

symbol description of the intramolecular solute descriptors

Chiz Kier and Hall molecular connectivity index, Z= 0, 1, 2, ...

JIx Balaban index: characterizes the shape of a molecule, which can take account of the covalent radii

CHI-V-3_P Kier and Hall valence-modified connectivity index CHI-3_P means third-order CHI index with three
paths (bonds) connected; V means that electron configuration of the atom (single or multiple
bonds) is considered

Ecoh cohesive packing energy of the solute with itself

FH20 desolvation free energy for water

Jurs-FNSA-1 fractional charged partial surface areas: total charge weighted negative surface area divided by the
total molecular solvent-accessible surface area

Jurs-PNSA-1 partial negative surface area: sum of the solvent-accessible surface areas of all negatively charged
atoms

Jurs-PPSA-1 partial positive surface area: sum of the solvent-accessible surface areas of all positively charged
atoms

Jurs-PPSA-3 atomic charge weighted positive surface area: sum of the product of solvent-accessible surface area
X partial charge for all positively charged atoms

Jurs-RPCS relative positive charge surface area: solvent-accessible surface area of most positive atom divided
by descriptor

Jurs-RPCG relative positive charge: charge of most positive atom divided by the total positive charge

Jurs-RNCG relative negative charge: charge of most negative atom divided by the total negative charge

Jurs-FPSA-1 fractional charged partial surface areas: partial positive surface area divided by the total molecular
solvent-accessible surface area

Jurs-FPSA-3 fractional charged partial surface areas: total charge weighted positive surface area divided by the
total molecular solvent-accessible surface area

Jurs-RNCS relative negative charge surface area: solvent-accessible surface area of most negative atom divided
by relative negative charge

Jurs-DPSA-1 difference in charged partial surface areas: partial positive solvent-accessible surface area minus
partial negative solvent-accessible surface area

Kappa6 Kier's shape indices; Kappaé6 is the sixth-order index, compares the molecule graph with “minimal”
and “maximal” graphs

log P octanol/water partition coefficient calculated by Advanced Chemistry Development (ACD,
www.acdlabs.com); log P is related to the hydrophobic character of the molecule

Area molecular surface area: a 3D spatial descriptor that describes the van der Waals area of a molecule

Shadow-Zlength

length of molecule in the Z dimension

Table 4. The Explicit Intermolecular Membrane—Solute Interaction Descriptors Forming the Trial MI-QSAR Descriptor Pool

symbol description of the membrane—solute descriptors

[(F(total)O average total free energy of interaction of the solute and membrane

[E(total)] average total interaction energy of the solute and membrane

Einter(total) interaction energy between the solute and the membrane at the total intermolecular system minimum
potential energy

Exy(2) Z = 1,4-nonbonded, general van der Waals, electrostatic, hydrogen-bonding, torsion, and
combinations thereof energies at the total intermolecular system minimum potential energy.
Xand Y can be the solute, S, and/or membrane, M

AExy(Z) change in the Z = 1,4-nonbonded, general van der Waals, electrostatic, hydrogen-bonding, torsion,
and combinations thereof energies due to the uptake of the solute to the total intermolecular
system minimum potential energy. X and Y can be the solute, S, and/or membrane, M

Er1(2) Z = 1,4-nonbonded, general van der Waals, electrostatic, hydrogen-bonding, torsion, and
combinations thereof energies of the total (solute and membrane model) intermolecular
minimum potential energy

AET(2) change in the Z = 1,4-nonbonded, general van der Waals, electrostatic, hydrogen-bonding, and
combinations thereof of the total (solute and membrane model) intermolecular minimum
potential energy

AS change in entropy of the membrane due to the uptake of the solute

S absolute entropy of the solute—membrane system

Ap change in density of the model membrane due to the permeating solute

0] average depth of the solute molecule from the membrane surface

D diffusion coefficient of the solute in the membrane model
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Table 5. The Five Test Set Compounds Used To Evaluate Each Best Model from Each Descriptor Model Class?

residuals of fit

compound 3-term model 4-term model 5-term model 6-term model

Linear Non-MI-QSAR

2-pentanone [—2.60] 7.27 1.20 0.04 —5.86
3-cresol [—1.82] 0.11 2.80 2.42 —13.05
acetic acid [-3.21] —41.21 —18.85 —17.40 —166.70
cortisone [—5.00] —18.33 —7.81 —4.99 —18.18
y-butyrolactone [—4.00] —16.05 —-13.73 —13.04 —24.41
Quadratic Non-MI-QSAR
2-pentanone 0.89 0.30 —8.58 —4.27
3-cresol -1.71 —1.99 —5.39 —3.06
acetic acid 41.59 —31.65 —9.22 7.24
cortisone 0.67 —5.77 1.40 —3.11
y-butyrolactone 16.01 —10.54 —17.53 —3.80
Linear Composite
2-pentanone 0.01 —0.13 —0.24 —0.14
3-cresol —0.04 —0.19 —0.46 0.15
acetic acid 0.01 —0.62 —0.16 -0.21
cortisone 0.22 0.02 —0.16 —-0.41
y-butyrolactone 0.00 -1.12 —-1.22 —0.62
Quadratic Composite
2-pentanone 0.29 -0.11 —0.51 —-0.77
3-cresol 0.30 —0.53 —0.07 -0.24
acetic acid —0.59 —-1.15 —0.50 —0.64
cortisone 0.62 0.36 —0.22 —0.25
y-butyrolactone —-1.01 —1.45 —-1.13 —1.43

2 The observed log k; values are given in brackets in the first compound listing, and the corresponding residuals of fit to the observed log k;
values are given for each model in columns 2—5.

Separating and assigning major and minor descriptors afterand QSAR models were built as a function of the number
QSAR model construction is difficult and ill-defined. Thus, of descriptor terms in a model. Statistical significance in the
it can be considered advantageous in the search for the majooptimization of a QSAR model was judged jointly by the
descriptors of a training set to define a representative subsetorrelation coefficient of fity2, and the leave-one-out cross
of the parent data set with respect to both chemical diversity validation correlation coefficient?. The leave-one-out?

and distribution of the endpoint measures (dependent vari-value is determined by systematically leaving out each
ables). The subset can be used as a representative trainingompound of the training set, and then predicting its value
set of the parent data set and lead to a small model (in termsbased on a model derived from the remainder of the training
of number of independent variables) where the independentset. The average of the correspondidgralues, based on
variables have a high chance of being major descriptors. Thethe predictions from each of these leave-one-out experiments,
minor descriptors can be thought of as “noise” in the fitting, is essentially they® value for the training set. In addition,
which is reduced by reducing the size of the system. That is GFA uses the Friedman’s lack of fit (LOF) measure to resist
the strategy employed here in reducing the size of the dataoverfitting, which is a problem often encountered in con-
set from 152 to 40 in the manner described above. structing statistical modefs.

All QSAR models were built and optimized using multi- A test set of five compounds of diverse structures that
dimensional linear regression fitting and genetic function span the training set range in legvalues was used to further
approximation, GFA, which is a multidimensional optimiza-  explore the robustness and predictivity of each QSAR model.
tion method based on the genetic algorithm paradigth.  The five test compounds are listed in Table 5 along with
Both linear and quadratic representations of each of thethe observed lod, values. The residual log, values for
descriptor values were included in the trial descriptor pool, the test set compounds, using each constructed QSAR model,
are also reported in Table 5. The “observed kggof two
(23) Rogers, D.; Hopfinger, A. J. Applications of Genetic Function of the test set compounds, 2-pentanone and acetic acid, are

Approximation to Quantitative Structuréictivity Relationships actually computed values from previously reported QSAR
and Quantitative StructureProperty Relationships. Chem. Inf.
Comput. Sci1994 34, 854—866.

(24) Rogers, D. WOLF 6.2 GFA Program; Molecular Simulation (25) Friedman, JMultivariate Adaptve Regression SplingStanford
Inc.: San Diego, 1994. University: Stanford, 1988.
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models?® The inclusion of these two compounds in the test  (b) Quadratic Models
set has been done to explore the consistency between the
models developed here to previously reported models. log k, = —4.85— 0.10 (Jurs-RNCS- 5.35f —

G. Classes and Properties of the QSAR Modelstwo 687.92 (Jurs-RNCG- 0.21Y + 1.34 (Jurs-RPCS- 2.91Y
classes of QSAR models were constructed on the basis of (5)
the set of descriptors employed in the trial descriptor

— A0 r2— D2
pool: (N=40; r°=0.96; q 0.63)
(1) Non-MI-QSAR modelderived from a descriptor pool  |og k, = —3.20— 0.002 (Jurs-DPSA-t 277.20§ —

_that contains only the intramolecular solute d_escrlptors_ listed 5 500 (Jurs-PNSA-1 40.09§ + 0.001 (Jurs-PPSA-1
in Table 3. These models are constructed in an equivalent
352.39% + 998.66 (Jurs-FNSA-%+ 0.11Y (6)

manner to the very large majority of skin penetration QSAR
models reported in the literature. (N=40; r*=0.94; ¢f=—-0.18)

(2) Combined (MI-QSAR) modeterived from a descrip-
tor pool that contains both the intramolecular and intermo- log k, = —0.49+ 0.69 (Jurs-RPCS- 3.00Y +

lecular membranesolute descriptors. 0.62 (Jurs-RPCS 2_47)2 — 702.03 (Jurs-RNCG-
These two classes of QSAR models were sought with 021? — 24.91 Jurs-RPCG- 0.12 (JUFS-RNCS— 5.10)2

respect to both the number of descriptors (3- to 6-descriptor- @)

term models) and linear and quadratic representation of the

descriptor terms. Outlier refinement analyses were carried (N=40; r*=0.97; ¢’=-0.59)

out for models that have reasonable statistical fits using all B
of the compounds of the training set. log k, = —3.26+ 0.77 (Jurs-RPCS- 3.47f +

0.10 (Jurs-RNCS- 3.20F — 747.21 (Jurs-RNCG-

0.23f + 0.62 (Jurs-RPCS 2.32f +
Results 0.94 Shadow-Zlength- 38.88 Jurs-RPCG (8)

A. The QSAR Models.The optimized 3- to 6-term QSAR (N=40; r’=0.97; ¢°=—0.59)
models, for the model-building constraints listed in Methods, .
are given below. The definitions of the descriptors used in  (2) Combined (MI-QSAR) Models

the models are given in Tables 3 and 4. (@) Linear Models

(1) Non-MI-QSAR log k, = —2.97+ 0.22 logP — 0.14Egdtor) —

(a) Linear Models 0.05E; . (vdW) (9)
log k, = 496.76— 599.33 Jurs-FPSA-+ 0.52 Area— (N=39; r’=0.80; ¢’=0.77)

184 Jurs PNSAL (1) 1ok = —2.43— 0.10E4tor) + 0.44 logP —

(N=40; r*=0.67; q’=—0.56) 0.04E4hb) — 0.04 Ecoh (10)
log k, = 31.34— 1908.61 Jurs-FPSA-3
4.80 Jurs-PPSA-3 478.84 Jurs-FNSA-+
157 Jurs-PNSA-L (2) - jog K = —1.01- 0.004Egdchg) — 0.10Edtor) +
(N=40; r’=0.88; ¢°=—0.31) 0.37 logP — 0.01E((tor) — 0.03Ec{hb) (11)
log k, = 35.27— 1.56 Jurs-PNSA-1- 1.72 CHI-V-3_P— (N=38: r?=084: ¢*=077)

2037.39 Jurs-FPSA-3 5.19 Jurs-PPSA-3-
474.97 Jurs-FNSA-1 (3)  logk, = —2.57— 0.05Eg{hb)+ 0.55 logP —

(N=40: r*=078: ¢ =—0.30) 0.02 Ecoh— 0.003Edtot) — 0.34 Chi10—
0.00003E(tot) (12)

(N=40; r>=0.81; ¢*=0.76)

log k, = 120.67— 216.58 Jurs-RNCG- 37.50J, —
7.17 CHI-V-3_P+ 4.37 Jurs-RPCS- (N=138; r>=0.85; ¢°=0.79)
109.70 Jurs-FNSA-1 4.02 Kappa6 (4)

b) Quadratic Models
(N=140; r*=0.80; o= —0.26) ) Q

log k, = —7.20+ 0.04 (logP + 3.28} +

(26) Kirchner, L. A.; Moody, R. P.; Doyle, E.; Bose, R.; Jeffery, J.; 0.01 (Ecoh— 45.14f + 0.002 Esdtor) — 34.45} (13)
Chu, I. The Prediction of Skin Permeability by Using Physico-
chemical DataATLA 1997, 25, 359-370. (N=140; r*=0.85; ¢°=0.81)
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log k, = —8.21+ 0.05 (logP + 3.28f + 0.003 Eggtor) —
34.45% + 0.001 (Ecoh- 45.14f + 0.02E(bend) (14)

(N=40; r*=0.88; ¢°=0.82)

log k, = —8.38+ 0.002 Eggtor) — 34.45F +
0.44 logP + 0.0005(FH20+ 83.58f +
0.00006 E(hb)+ 11.39f + 2.64 Chi12 (15)

(N=40; r*=0.95; ¢°=0.81)

log k, = —8.41+ 0.003 Eggtor) — 21.85f +
0.45 logP + 0.0005 (FH20+ 83.58 +
0.00006 E(hb)+ 11.39f + 4.05 Chi12 +

0.06 (Chi8— 4.93Y (16)
(N=40; r>=0.91; ¢*=0.81)

B. Analysis and Comparison of the QSAR Models.
Comparing the QSAR models constructed from the two

classes of descriptors clearly indicates that models compose

of a combination of both non-MI-QSAR and MI-QSAR
descriptors yield, by far, the best models. All of the non-
MI-QSAR models show negative values gf and, conse-
quently, are rather unstable models in terms of predictivity.
Thus, the MI-QSAR descriptors are providing information

Potts and Gu¥/ described a skin permeability prediction
model based on molecular weight (MW) and the octanol
water partition coefficient (lodP) using a skin permeability
data set collected by FlyriiThis optimum skin permeation
QSAR model is

log k, = 0.72 logP — 0.0059 MW—2.80  (17)

(N=93; r’=0.67; q°=0.65)

This QSAR model indicates that percutaneous absorption is
mediated by the hydrophobicity and the molecular weight
of the penetrant. The Potts and Guy model is regarded as
one of the better QSAR models for skin penetration predic-
tion. However, the linear non-MI-QSAR descriptor models,
egs 14, constructed in this study are far different in
descriptor terms from the Potts and Guy model, eq 17. Thus,
in order to explore if the training set used in this work would
provide a better QSAR model using the same descriptors of
the Potts and Guy model, a “new” Potts and Guy model was
constructed and optimized using the GFA. The resulting

dnodel is

log k, = 0.28 logP — 0.007 MW—2.00  (18)
(N=140; r*=0.56; ¢?=0.51)

The use of only log? and MW as descriptors leads to a
QSAR model having lower values of bothandg? for the

about the skin penetration process that is not captured bytraining set of this study as compared to thandc? of the

the intramolecular (non-MI-QSAR) solute descriptors.

Potts and Guy QSAR model, eq 17. In order to test the

In the outlier refinement analysis, analogues of the training predictive power of eq 18, it was applied to the same test

set were considered outliers when the residuals of fit exceedset of five compounds used to evaluate the other QSAR
2 standard deviations, SD, from the mean of the residual of models developed in this study. The predicted skin penetra-
fit of the whole training set. Using this criterion outlier tion values for the test set compounds using eq 18 are given
compounds were found in the composite linear models. Thein Table 6. The results of applying the Potts and Guy QSAR

outliers are scopolamine and benzaldehyde (for the 6-termmodel, eq 17, directly to the test set of five compounds is

model), estriol and benzaldehyde (for the 5-term model), and @lso given in Table 6. It is clear from the residuals of fit for

costicosterone (for the 3-term model). The quadratic com- the test set predictions that the linear composite QSAR
posite models do not have any outliers, suggesting thatmodels (Table 5) perform better than both of the Potts and
slightly nonlinear dependencies exist between the descriptorscUy models. Of course, more descriptor terms are present
and logk,. Outlier refinement analyses were not carried out N the composite QSAR models, but these additional descrip-
for non-MI-QSAR models since each of these models have [ térms are seemingly needed to be able to make good

negative values af? and, therefore, lack predictive stability. pred|ct.|0ns. . .
, In this context of descriptor terms, a comparison was done
The observed and residual lég values for a test set of

, ) , . between the Potts and Guy model (eq 17) and the three-
five compounds are given as part of Table 5. An inspection term linear composite QSAR model (eq 9)

of the residual values of prediction for the test set suggests
that the models from the combined descriptor sets are, indeed|og k, = 0.22 logP — 0.14Eg{tor) — 0.05E,,(vdW) —
most predictive as suggested by tifezalues of the models. 2.97
The two test set compounds, 2-pentanone and acetic acid,
whose “observed” log, values were actually computéd,

are predicted with fidelity about equal to that of the other  Both of these QSAR models have similar regression
three compounds. This suggests that there may be a generalonstants £2.80 and—2.97) and similar dependencies on
consistency among the skin penetration QSAR models, withjog P (regression coefficients of 0.72 and 0.22). The
the differences among the QSAR models mainly arising from molecular weight term of the Potts and Guy model is replaced
the extent of structural diversity that can be handled by a
model and, perhaps, the differences in predictive resolution (27) potts, R. 0.; Guy, R. H. Predicting Skin Permeabil@parm.
among the QSAR models. Res 1992 9, 663-669.

(N=39; r?=0.80; ¢?=0.77)
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Table 6. Residuals of Fit for the Test Set Predictions A corollary to this conclusion is that solutenembrane
Using the Optimized Potts and Guy 2-Term (log P and interactions, as represented by the MI-QSAR descriptors,
MW) QSAR Model for the Training Set of This Study, Eq provide information regarding the skin penetration process
18, and the Original Potts and Guy QSAR Model, Eq 17 that cannot be realized from properties (descriptors) derived
log kp prediction, log k, prediction, solely from the solute. Thus, QSAR models for skin
test compound eq 18 eq 17 penetration employing only solute-derived descriptors fail
2-pentanone —0.22 0.13 to capture significant features of the skin penetration process,
3-cresol 0.27 -0.10 and they can be expected to be limited both in predictive
acetic acid —-0.67 0.24 power and in the insight they provide regarding this
cortisone -1.21 —1.96 biochemical process.
y-butyrolactone —-1.23 —-0.27 The second major conclusion is that partitioning between

aqueous (polar) and lipid (nonpolar) media, which is best
) ) ) , represented by log, is the most significant factor in the
by two descriptor terms in the composite descriptor QSAR gyin penetration mechanism. I&jappears in all composite
model. The second descriptor term of eq-8.14 Esdtor), QSAR models of this study and nearly every non-MI-QSAR
indicates that skin penetration decreases as the torsion energy, , qe reported in the literature. Interestingly, however, log
of a penetrant solute increases. Such an increase in torsiorp is not found in any of the non-MI-QSAR models, eqs4l,
energy can arise as the penetrant solute becomes larger, that, ihis study. Certainly thep of eqs 14 are poor, but the
is, as molecular weight increases, and/or as the penetrantiterion for building these models wag which are
becomes more rigid in conformation. The other descriptor gjgnificant for these models. It would seem that the partition-
term in the composite descriptor QSAR modeh8.05E e ing process between aqueous and lipid media can be
(vdW), which indicates that skin penetration of the penetrant represented by descriptors other than Bgand/or such
decreases as the van der Waals penetraembrane inter-  geqcriptors can augment Ién describing such partitioning.
action energy favorably increases. This term is dependentyy,o presence and importance of &y are seemingly
on molecular weight but can both increase and decrease withyenendent upon the number, structure, and size of compounds
molecular weight. This term is, most likely, a compensating i, 5 training set, and on the set of descriptors available for
term to the logP term. Better van der Waals interactions, building a model. For medium size data sets and/or for
which dominate the origin of hydrophobicity, are possible yegcriptors like those used in this study, Pgan be absent
when the solute is in the membrane than when in an aqueous,ec4se specific hydrogen bonding, hydrophobic and aqueous
medium. TheEine(vdW) descriptor captures this thermo-  gqation, and related descriptors are better representations
dynamic feature. . . of compound partitioning into a membrane than IBg
Thus, the three-term combined descriptor QSAR can be However, as a training set becomes very large and/or very
thought to “dissect” the molecular weight term of the Potts structurally diverse, lo§ becomes the best single descriptor
and Guy model and replace it with two terms that incorporate to capture the average behavior of membrane partitioning.
more molecular detail. The highef value in the linear Byt capturing the average behavior means that the precision
composite descriptor QSAR model, as compared to both eqsof prediction of the corresponding model will drop off.

model. The higheg? value of the combined descriptor QSAR  skin penetration of a compound and reveal features of the
model indicates that it is more predictive and captures more mechanism of action:

structural information than does the Potts and Guy model. (1) Polar/nonpolar partitioning of the compound as

generally represented by |&y This descriptor is present in
all of the composite QSAR models and indicates that skin
penetration increases with increasing Ieg

Three major conclusions can be made from the findings (2) Polar, electrostatic, hydrogen-bonding, and/or aqueous
of this study which relate to both understanding the skin solvation interactionsnvolving the compound as represented
penetration process, and how best to model and correspondby FH20,Esghb) and Esdchg). The presence of FH20 only
ingly extract information from data generated in skin as quadratic terms in the models suggests that there is an
penetration studies. The first major conclusion is that the optimum aqueous solvation free energy (aqueous solubility)
composite descriptor QSAR models in this study are far for a compound that, in turn, optimizes skin penetration. It
better than those constructed using only non-MI-QSAR trial is this factor, relative aqueous solubility, which is being
descriptor sets. The composite descriptor QSAR models arecaptured by this set of descriptors.
very “robust” statistically. Moreover, on the basis of the high  (3) Size and shapef the compound as represented by
values of theg? and of the test set prediction, these models EsgvdW), Chi8, Chil0, and Chil12. Presumably this factor
should have considerable predictive power skin penetrationaccounts for the steric component to diffusing through the
studies, which seems borne out for the test set predictions.skin media. In this particular study, the use of size- and
Overall, the MI-QSAR descriptors do, in fact, win out over shape-related descriptors, which substitute for a molecular
the other descriptors in building optimum QSAR models. size only descriptor found in many non-MI-QSAR models,

Discussion

VOL. 1, NO. 6 MOLECULAR PHARMACEUTICS 475



articles Santos-Filho et al.

obviates the need to divide the training set into structural/ penetration QSAR models which, in composite, will provide
chemical classes of compounds for which individual QSAR accurate estimates of skin penetration for a wide range of
models are built for each class in other studies of skin chemistries as well as to obtain more information about the
penetratiort:® overall skin penetration mechanism.

(4) Conformational flexibilityof the compound as repre-
sented hyEsgtor) andErr(tor). This pseudo entropic factor
can also be related to theze andrigidity of a penetrant
solute.

Ongoing work is focusing upon extending and refining
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